Inhibition of PKA attenuates memory deficits induced by β-amyloid (1-24), and decreases oxidative stress and NF-κB transcription factors.


Source

Department of Pharmacology and Toxicology, Pharmaceutical Sciences research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.

Abstract

Alzheimer’s disease (AD), the most relevant cause of dementia in elderly, is characterized by amyloid β (Aβ) containing plaques and neurofibrillary tangles, synaptic and neuronal loss, along with progressive cognitive impairment in short-term memory. However, mechanistic links between protein kinase A (PKA), oxidative stress and memory loss in response to Aβ remain elusive. In the present study, we examined the effects of post-training bilateral intra-hippocampal infusions of the specific protein kinase AII inhibitor, H-98, on memory deficits induced by Aβ (1-24) in Aβ-pretreated rats. H-98 and Aβ were administered immediately after completion of training. All animals were trained for 4 consecutive days and tested 9 and 91 days after the infusions. Significant differences were observed in the time and distance of finding the hidden platform in Aβ treated animals after 91 days. Interestingly, intra-hippocampal infusion of H-98 (5μM/side) significantly prevented the Aβ-induced memory impairment. Furthermore, evaluation of NFκB (nuclear factor-κB), and antioxidant enzymes, such as γ-GCS (glutamylcysteine synthetase), HO-1 (hemeoxygenase-1), GSH (glutathione), and SOD (superoxide dismutase) confirmed the protective effect of H-98. Given the possible neuroprotective effects of H-98 on Aβ-induced memory impairment, our results may open a new avenue for the prevention of AD by PKAII signaling pathway inhibitor.

Copyright © 2023 Elsevier B.V. All rights reserved.