Nuclear factor κB¹/RelA mediates the inflammation and/or survival of human airway exposed to sulfur mustard.


Source
Chemical Injury Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.

Abstract
CONTEXT:
Sulfur mustard (SM) is known as an effective chemical agent and was used in the ٨١٠٩١ during the Iran-Iraq war against Iranians. At the present time, there are more than ١٠٠٠,٠٤١ people suffering from pulmonary lesions due to mustard gas in Iran. Though much is known about the gross pathology of SM damage, the molecular and cellular basis for this pathology is not well understood.

OBJECTIVE:
One of the most important protein groups involved in inflammatory responses is nuclear factor κB protein (NF-κB¹) family. They belong to the category of DNA-binding protein factors necessary for transcription of many proinflammatory molecules. In our research, we examined the role of NF-κB¹/RelA in the pathophysiology of the lung.

MATERIALS AND METHODS:
We investigated ١٠١ normal individuals and ١٠٢ SM induced patients. Expression of NF-κB¹/RelA in controls and the SM exposed samples was measured by real-time polymerase chain reaction and localization of NF-κB¹ protein was detected by immunohistochemistry staining.

RESULTS:
Our results revealed that expression levels of NF-κB¹ and RelA were upregulated ٤٦.٠ - ٥.٦ fold and ٣٨.٠ - ٤٣.٨ fold, respectively, in the SM exposed patients in comparison with control samples.

DISCUSSION AND CONCLUSION:
As far as we know, this is the first finding of induction of NF-κB in patients exposed to SM. NF-κB¹/RelA may play a major role in inflammation induced by mustard gas or even in cell survival in the bronchial wall of affected patients.